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Abstract

In the processing of sea-bottom echo signal, the total received noise is approximated to Lorentzian form according to its

vertical coherence. Then a method based on parameter-induced stochastic resonance (PSR) is presented. By means of

tuning system parameters, numerical simulation shows that PSR method can effectively recover the spatial signal

interfered by Gaussian noise. It also shows that PSR method has well applicability when processing spatial signal

interfered by K-distributed envelope noise.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

When detecting buried target in shallow sea bottom, the echo signal is interfered by background noise and
reverberation. In shallow water, reverberation mostly arises from the sea bottom reverberation. The roughness
of the sea bottom is dominant for reverberation [1]. Processing echo signal embedded in reverberation is an
attractive problem in acoustic signal processing. In the echo signal processing, both the ability to detect the
presence of a target echo and the accuracy of measurements (range, angle, etc.) are limited by signal-to-noise
ratio (SNR) [2].

Stochastic resonance has been developed rapidly in a variety of fields both in theory and application since
1981, when it was proposed by Benzi et al. [3–7] to explain the periodicity of ice ages. As a counterintuitive
phenomenon in the nonlinear system, stochastic resonance is the cooperation between the stochastic excited
nonlinear system and the external deterministic force. Under certain conditions, noise plays an active role in
the system output. Getting the maximum SNR to realize stochastic resonance by tuning system parameters,
this is the basis of parameter-induced stochastic resonance (PSR) [7–9].

In this paper, a method based on PSR is developed for processing spatial echo signal. This paper is
organized as follows: in Section 2, the spatial echo signal model is presented. In Section 3, the spatial signal is
processed by the PSR method, which is extended from the PSR signal processing in time domain [7–9,16]. The
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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numerical simulation is carried out in Section 4. Section 5 is devoted to simply explore the applicability of PSR
method to process signal interfered by non-Gaussian noise. The conclusions are presented in the Section 6.
2. Spatial echo signal model

In the detection of the buried target in shallow sea bottom, active sonar emits non-directive sine wave with
frequency f c (Hz), duration tt (s), and the depth of sea is h (m). The receiving uniform line array (ULA) with
interval Dz is shown in Fig. 1. At the time t (tbtt), take the coordinates ðz; rÞ as shown in Fig. 2, the interfering
reverberation is the sum of echo scattered by the scatterers distributed at the cirque on the sea bottom [10,11].
At the nth receiving element, the echo signal SðnÞ is interfered by the background noise W ðnÞ and
reverberation noise RðnÞ. So we obtain

yðnÞ ¼ SðnÞ þ RðnÞ þW ðnÞ, (1)

where R is statistically independent with W, both R and W are assumed to be Gaussian.
Without losing generality, assume the signal received by the first element at time t is sð1Þ ¼ sinð2pf ctþ f0Þ,

where f0 is the arbitrary phase. Then the received signals can be written in vector form

½Sð1Þ Sð2Þ � � �SðNÞ�T

¼ ½sinft sinð2pDzf c sin y=cþ ftÞ � � � sin½2pðN � 1ÞDzf c sin y=cþ ft�
T, ð2Þ
Fig. 1. Uniform line array.

Fig. 2. Reverberation spatial sketch map.
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where c is acoustic velocity in sea, ft ¼ 2pf ctþ f0. Therefore, the received signal series SðnÞ; n ¼ 1; 2; . . . ;N
are the spatial samples along the coordinate z with sample interval Dz. Since rbh, the spatial wavenumber of
echo with direct path is 2pf c sin y=c � 2pf cðh� zÞ=cr, which varies linearly with coordinate z.

According to the normal mode reverberation theory, the normalized vertical spatial correlation of
reverberation R can be described as [12]

CRðzÞ ¼ 1þ
k2z2h

2Qr

� ��ðlþ2Þ=4
, (3)

where z is the spatial interval between any two receiving elements, k ¼ 2pf c=c is the wavenumber, Q is the sea
bottom reflection coefficient, and l is reverberation model parameter (for Lambert reverberation model, l ¼ 2).

3. Spatial signal processing by parameter-induced stochastic resonance

Take the spatial coordinate z as the variable, and the received signal SðzÞ þ RðzÞ þW ðzÞ as the input of the
bistable system. When the bistable system gets stable quickly enough, the varying signal in a short interval can
be viewed as a constant value H, which can be determined by the weighed average [8]. Therefore, we obtain the
following:

dx

dz
¼ ax� mx3 þH þ RðzÞ þW ðzÞ, (4)

where x is the system stochastic output, a and m are the adjustable system parameters.
The total received noise RðzÞ þW ðzÞ can be approximated to Lorentzian noise xðzÞ, which has the following

stationary correlation form:

hxðzÞxð0Þi ¼
D

tz

exp �
jzj

tz

� �
, (5)

where D is the noise intensity, and tz is the correlation length of noise. The Lorentzian noise has the spectrum
form

SðoÞ ¼
2D

1þ o2t2z
, (6)

where o denotes the variable in the wavenumber domain. The parameters tz can be estimated from the total
noise data by the method of least-squares data fitting. The parameter D can be derived by D ¼ tzs2, where s2

is the noise variance.
Assume the correlation length tz is small, and then the corresponding approximating Fokker–Planck

equation of Eq. (4) is [13]

qPðx; zÞ

qz
¼ �

q
qx
½f ðxÞPðx; zÞ� þD

q2

qx2

Pðx; zÞ

1� tzf 0ðxÞ

� �
, (7)

where Pðx; zÞ is the probability density function (PDF) of the stochastic output x at spatial coordinate z,
f ðxÞ ¼ ax� mx3 þH. The stable solution of Eq. (7) is given by [14]

PSðxÞ ¼ Nj1� tzf
0
ðxÞj exp

Z x

0

f ðxÞ
D

dx�
1

2D
tzf 2
ðxÞ

� �
, (8)

where N is the normalizing factor.
The solution of Eq. (7) can be numerically obtained by a variational method based on eigenfunction

expansion [8,15]. The minimum non-zero eigenvalue l1 is regarded as the system response speed, which
dominates how fast the output reaches the stable state. The SNR of the stable output x is

SNR ¼
E½x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½x2� � ðE½x�Þ2
q , (9)
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where

E½x� ¼

Z 1
�1

xPSðxÞdx,

E½x2� ¼

Z 1
�1

x2PSðxÞdx. (10)

After selecting a certain response speed l1, the maximum SNR can be obtained by tuning the system
parameters a and m.

Since the system is nonlinear and the signal is varying, the output signal is distorted. A formula to obtain the
recover signal Ĥ from the stochastic output of the system with optimal parameters a and m is given as
follows [16]:

Ĥ � mx̄3 � ax̄, (11)

where x̄ ¼ E½x�. Using the spline matching method to the results Ĥ, a good signal curve is recovered.
There is an optimal system response speed, which is related to the wavenumber and the amplitude of input

signal as well as the properties of interfering noise. Here a simple method is provided to choose the optimal
system response speed. Let ĤðzÞ be the recovery signal, and HðzÞ be the input reference signal. The cross-
correlation between HðzÞ and ĤðzÞ is

CorðHðzÞ; ĤðzÞÞ ¼

R
ĤðzÞHðz� jÞdzR

Ĥ
2
ðz� jÞdz

, (12)

where j is the phase lag (there is a phase lag between the recovery signal and input signal). Hence, the recovery
signal ĤðzÞ is passed through a correlation receiver with a varying delay. According to Eq. (12), with each
given system response speed, each maximum cross-correlation is derived by varying the delay of the receiver.
Then the system response speed corresponding to the maximum cross-correlation is optimal.

4. Numerical simulation

Consider the emitted signal is sine wave with frequency f c ¼ 20 kHz and pulse duration tt ¼ 1ms, the depth
of sea h ¼ 100m, and the sea bottom reflection coefficient Q ¼ 0:3. Choose Lambert scattering model l ¼ 2
and spherical spreading model, take the absorption coefficient of sea as b ¼ 3:8 dB=km, then the transfer loss
is TL ¼ 20 lg rþ br� 10�3 dB. Hence, the level of received signal is ðSL� 2TLþ TSÞdB. The level of
received reverberation noise is ðSL� 2TLþ Sb þ 10 lg cttprÞdB, where Sb is the sea bottom scattering
strength [17]. Then the ratio of signal to reverberation is ðTS� Sb � 10 lg cttprÞdB, and the ratio of signal-to-
background noise is ðSL� 2TLþ TS�NLÞdB, where NL is background noise level. Assume the source level
is SL ¼ 210 dB, the target strength is TS ¼ 5 dB, the sea bottom scattering strength is Sb ¼ �35 dB, the
background noise is NL ¼ 45 dB. Choose spatial sample interval Dz ¼ 1 cm. Without losing generality,
assume the amplitude of received target echo signal is normalized to 1. According to the ratio of signal to
reverberation and background noise, the variance of normalized background noise and reverberation at
different range is obtained. Then the parameters D and tz of the normalized total noise varying with range r

can be obtained with the forgoing approximation method.
As shown in Fig. 3, the Lorentzian parameters D, tz vary with the increase of range. Hence the optimal

system parameters a and m vary with range r, where r ¼ ct=2.
The numerical simulation is carried out by Simulink of MATLAB. The system is shown in Fig. 4. In order

to simulate the reverberation, the white noise is filtered by the designed filter, which makes the correlation of
the output fulfill the foregoing reverberation vertical correlation Eq. (3). The simulating signal is chirp signal,
which simulates the varying wavenumber spatial signal.

At the distance r ¼ 4 km, with the given parameters, the normalized variances of reverberation
and background white noise are s2R ¼ 0:94, s2W ¼ 1:4. The corresponding Lorentzian noise parameters
D ¼ 5:8� 10�2, tz ¼ 2:5� 10�2. Considering the highest wavenumber is 0:6p, we take l1 as 3. According
to PSR theory, the system parameters can be chosen as a ¼ 0:35, m ¼ 74. The input interfered signal
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Fig. 3. The Lorentzian parameters against range.
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Fig. 4. The block scheme for simulating bistable system.
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and the output of the system are shown in Fig. 5(a) and (b). The input signal and recovery signal are shown
in Fig. 5(c).

It is shown that the stochastic resonance system can recover interfered signal effectively, therefore PSR
provides a potential applicability in sonar echo signal processing. In different shallow sea environment, the
vertical correlation of the interfering noise is different, hence the approximated Lorentzian parameter varies. It
has been shown that the effects of the correlation length on the numerical calculation is not great [8]. However,
in some sense, the mechanism of SR can be seen as the transferring of noise energy from high-frequency band
to the signal frequency domain, therefore the shorter the correlation length of interfering noise is, the more
superiority of PSR method to the linear filter will exhibit. The goal of the PSR system is to improve the
reception of echo signal with direct path, the reception ability of sequent echo signals with multipath will be
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Fig. 5. (a) The signal interfered by Gaussian noise with correlation length tz ¼ 2:5� 10�2, (b) the output of the system and (c) the input

signal and recovery signal.
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reduced. The reason is along the vertical coordinate z, the spatial wavenumber of the echo with multipath is
different to that of the echo with direct path, and the PSR system is optimized for a certain wavenumber.

5. The effect of non-Gaussian noise

The Gaussian distribution of reverberation is derived by the central limit theorem under the assumption
that there are a large number of scatters in a range-bearing resolution cell. However, with the advent of high-
resolution sonar, the conditions of central limit theory are violated, so reverberation is no longer Gaussian
[18,19]. In the preceding method, Fokker–Planck equation is derived by assuming that the noise is Gaussian.
The departure caused by the probability mismatch is simply explored in the following section.

The K-distributed reverberation-envelope is a standard model to describe the PDF of non-
Gaussian reverberation. The noise with shape parameter a and scale parameter l is generated using the
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compound method [19]

X ¼
ffiffiffiffi
V
p

Z, (13)

where V is the Gamma random variable with parameters a and 1, Z is the Gaussian random variable with zero
mean, variance l, and V is statistically independent with Z. When a!1 , the distribution of X tends to be
Gaussian.

Consider an input signal sðzÞ ¼ sinð0:6pzÞ is interfered by a K-distributed envelope white noise with
intensity D ¼ 0:025 , shape a ¼ 1 and scale l ¼ 1. The probability density of the noise is shown in Fig. 6 with
comparison to Gaussian probability density with unit variance. Choose Dz ¼ 0:01m, hence the noise variance
is s2 ¼ 5, according to PSR theory, choose system parameters as a ¼ 0:4, m ¼ 80. The interfered signal, system
output and the recovery signal is shown in Fig. 7(a)–(c), respectively. It can be shown that although there is a
probability density mismatch in the noise distribution, the method based on Gaussian precondition shows well
applicability.
6. Conclusion

In this paper, the spatial echo signal is processed by the method based on parameter-induced stochastic
resonance. Numerical simulation shows that the PSR method can effectively recover echo spatial signal
interfered by reverberation in shallow sea. The method can be summarized as follows:
(1)
 Approximate the total noise to Lorentzian form according to environmental and sonar system parameters.

(2)
 According to the highest wavenumber of spatial signal, select a certain system response speed l1. Tune the

system parameters a and m to get the maximal SNR gain.

(3)
 Recover the output of the system according to the recovery formula.
Notice that the properties of both noise and signal vary with range r, therefore, the optimal PSR system is
time-varying. As shown in the above numerical simulation, the sample interval is taken as Dz ¼ 1 cm, which is
not easy to be realized for the minimum separation of hydrophones. To get small spatial sample interval,
investigation involved with moving array is now being undertaken. Also, the effects of non-Gaussian noise in
the Fokker–Planck equation need to be studied in further work.
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